Adrenal Insufficiency (AI)

Christine Albini, MD PhD
Department of Pediatrics, University at Buffalo
Division of Endocrinology-Diabetes
Women and Children's Hospital of Buffalo

Adrenal Insufficiency (AI)

Objectives
- Physiology
- Etiology
- Signs and Symptoms
- Diagnostic Testing
- Treatment

Adrenal Hormones

Glucocorticoids
- Hydrocortisone
- Cortisol
- DHEA
- 17-OH Prog.
- 17α-OH Prog.
- 21-Hydroxylase
- 11-Deoxycortisol
- Androstenedione
- Testosterone
- 17α, 20α-Lyase
- Estrone
- Estrogen
- Aromatase
- Mineralocorticoids
- Aladosterone
- Cortisol

Feedback Mechanism

- Renin Angiotensin
- ACTH
- Cholesterol
- Aldosterone
- Cortisol

Adrenal Insufficiency Physiology

- Primary AI: Results from disease intrinsic to the adrenal cortex.
- Secondary AI: Results from deficient secretion of ACTH by the pituitary gland.
- Tertiary AI: Results from deficient secretion of hypothalamic CRH or other ACTH secretagogues.
- NOTE: Secondary & Tertiary AI are placed in one category: Central Adrenal Insufficiency.

Central Adrenal Insufficiency

- Isolated ACTH deficiency: mutations in TPIT, POMC, PCI genes.
- Congenital hypopituitarism: mutations in PROP1, HESX1, LHX4.
- Tumors: craniopharyngioma, dysgerminoma.
- Tumor treatment: surgery, irradiation.
- Congenital malformations: empty sella.
- Anencephaly, Septo-Optic Dysplasia, other midline defects.
Central Adrenal Insufficiency (cont)
- Infiltrative diseases: Histiocytosis X, Sarcoidosis, Hemochromatosis
- Trauma
- Infections: meningitis, encephalitis.
- Cessation of glucocorticoid therapy or ACTH therapy, megestrol acetate.
- Removal of a unilateral adrenal tumor with suppression of other side.
- Infants born to mothers treated with glucocorticoids (rare).

Primary Adrenal Insufficiency
Adrenal Dysgenesis
- Gene Defects
 - ACTHR/MC2R
 - MRAP
 - DAX-1/NROB1
 - SF-1/NR5A1
 - IMAGe Syndrome

Primary Adrenal Insufficiency
Impaired Steroidogenesis
- Steroid pathway
 - CAH, POR
- Cholesterol pathway
 - SLO Syndrome
- Drugs:
 - Ketoconazole
 - o,p’DDD (mitotane)
 - Rifampin
 - Etomidate, Aminoglutethimide

Etiology of Primary AI (Addison’s) Overview
- Adrenal Dysgenesis
- Adrenal Gland Destruction
- Impaired Steroidogenesis
- Medication Induced AI

Primary Adrenal Insufficiency
Adrenal Destruction
- Autoimmune
- Adrenal hemorrhage
- Tumors
- Infection
- Infiltrative disorders
- Bilateral adrenalectomy
- Peroxisomal/Lysosomal Disorders.

Congenital Adrenal Hyperplasia
- Group of autosomal recessive disorders
- Common feature is an enzymatic defect in the steroidogenic pathway leading to the biosynthesis of cortisol: \(\downarrow \text{Cortisol} \rightarrow \uparrow \text{ACTH} \rightarrow \) adrenal hyperplasia.
- More appropriately referred to by the names of the specific deficiencies involved.
- Phenotypes determined by which hormones are deficient and/or in excess.
Congenital Adrenal Hyperplasia

- 21 Hydroxylase: 95%
- 11β Hydroxylase: 5–8%
- 3β HSD: 2.4%
- 17α hydroxylase: < 1%
- StAR/Lipoid: < 1%

Adrenal Hypoplasia Congenita (AHC)

- Defect in adrenal cortical development.
- Deficiency of glucocorticoids, mineralocorticoids, and adrenal androgens.
- Appears in infancy.
- Two forms:
 - X-Linked form with very large adrenocortical cells.
 - Sporadic recessive form with miniature cells.

Adrenal Hypoplasia Congenita (AHC) (cont.)

- X-Linked Form: Due to gene defect NROBI expressed in the hypothalamus, pituitary gonadotrophs, adrenals, and testes.
- Encodes for a nuclear receptor DAX-1.
- Infant males get microphallus and adrenal insufficiency.
- A contiguous gene deletion syndrome including the gene for Duchenne Muscular Dystrophy (DMD), glycerol kinase gene (GK), and ornithine transcarbamylase gene (OTC) can give rise to other symptoms.

Primary Adrenal Insufficiency

Idiopathic Autoimmune Adrenalitis

- Onset: mid-childhood, adolescence
- HLA – DR/DQ
- Associated disorders: rare
- Sporadic inheritance
- Anti-adrenal antibodies: present
- Anti-steroidal cell antibodies: rare

Autoimmune Polyendocrinopathy Syndrome Type 1 (APS1)

- APS1: Autoimmune Polyendocrinopathy candidiasis and ectodermal dystrophy (APECED).
- Autosomal recessive: childhood onset.
- Chronic Mucocutaneous Candidiasis: 73–100%
- Hypoparathyroidism: 90%
- Primary Adrenal Insufficiency: 60-80%
- Ectodermal dysplasia: 77%

Autoimmune Polyendocrinopathy Syndrome Type 1 (APS1) (cont.)

- Condition may be associated with: chronic active hepatitis, malabsorption, alopecia, pernicious anemia, vitiligo, hypogonadism, primary hypothyroidism.
- Mutations in the AIRE gene, an autoimmune regulator gene.
- No HLA association
- Positive for anti-adrenal cell antibodies.
- Positive for anti-steroidal cell antibodies.
Autoimmune Polyendocrinopathy Syndrome Type 2 (APS 2)

- Onset: Childhood – Adulthood
- Autosomal dominant – incomplete penetrance
- Female predominance: 3:1
- HLA-DR/DQ
- Adrenal Insufficiency: 100%
- Auto-immune thyroid disease: 70%
- Type I DM: 52%

Autoimmune Polyendocrinopathy Syndrome Type 2 (APS 2) (cont.)

- Anti-adrenal antibodies: present
- Anti-steroid cell antibodies: rare
- Other Associated disorders: pernicious anemia, myasthenia, gravis, vitiligo, alopecia, immune thrombotic cytopenic purpura

Autoimmune adrenal insufficiency in children

<table>
<thead>
<tr>
<th>Autoimmune polyendocrinopathy syndrome type 1</th>
<th>Autoimmune polyendocrinopathy syndrome type 2</th>
<th>Isolated autoimmune adrenals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
<td>50%</td>
<td>20%</td>
</tr>
<tr>
<td>Age at onset</td>
<td>Young, early childhood</td>
<td>Mild, adolescence</td>
</tr>
<tr>
<td>Gender distribution</td>
<td>Male: Female</td>
<td>Male: Female</td>
</tr>
<tr>
<td>Associated Disorders</td>
<td>Hyperparathyroidism</td>
<td>Autoimmune thyroid disease</td>
</tr>
<tr>
<td>Antiadrenal antibodies</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Antibasal antibodies</td>
<td>Present</td>
<td>Rare</td>
</tr>
<tr>
<td>Major Manifestations</td>
<td>Loss of function in AEP</td>
<td></td>
</tr>
<tr>
<td>Primary Afflict</td>
<td>ABCD1</td>
<td></td>
</tr>
</tbody>
</table>

Hyperpigmentation of the oral mucosa

Primary Adrenal Insufficiency: Adrenoleukodystrophy (ALD)

- X-Linked
- Incidence: 1:20,000
- Defective ABCD1 gene/ALDP protein
- Defective beta oxidation of very long chain fatty acids (VLCFA’s)
- Inflammatory demyelinating process: involves cerebral hemispheres in young and adolescent boys.
Primary Adrenal Insufficiency: Adrenoleukodystrophy (ALD) (cont.)

- Adrenal insufficiency may predate, occur simultaneously, or follow the onset of neurological deficits.
- Approximately 10% of ALD patients present with Addison’s disease alone, usually young boys less than 8 years.
- Plasma VLCFA’s should be done in all males with idiopathic primary AI.
- Approximately 20% of women carriers have a milder form of AI and/or CNS disease.

Adrenal Insufficiency Adrenomyeloneuropathy

- Non-inflammatory distal axonopathy: long tracts of spinal cord and peripheral nerves.
- Predominance: males, ages 20-40.
- Slowly progressive paraparesis.
- May or may not involve cerebral hemispheres.
- Check plasma VLCFA’s in all males with primary AI and in men with progressive paraparesis.

Adrenal Insufficiency Clinical Manifestations

Mineralocorticoid Deficiency

- Muscle weakness
- Fatigue
- Weight loss
- GI Symptoms: nausea, vomiting, diarrhea
- Salt Craving
- Postural dizziness
- Hypotension, decreased BP, decreased blood volume → shock

Adrenal Insufficiency Clinical Manifestations (cont.)

Glucocorticoid Deficiency

- Fasting Hypoglycemia
- Increased insulin sensitivity
- Decreased gastric acidity
- Gastrointestinal symptoms: nausea, vomiting
- Fatigue
- Headache
- Myalgia’s, arthralgia’s
- Decreased cardiac output; Decreased peripheral vascular resistance → CV collapse

Adrenal Insufficiency (AI) Clinical Features

Androgen Deficiency

- Decreased axillary hair & pubic hair
- Decreased libido

Increased Pituitary ACTH & MSH

- Hyperpigmentation

Primary Adrenal Insufficiency

- Hyperpigmentation
- Hyponatremia
- Hyperkalemia
- Metabolic Acidosis

Central Adrenal Insufficiency

- Normal Sodium or Mild Hyponatremia
- No Hyperkalemia
- No Metabolic Acidosis
- No Hyperpigmentation
Adrenal Insufficiency (AI)
Diagnostic Testing/Evaluation

- Baseline Studies:
 - 8 AM Cortisol, ACTH
 - Fasting glucose
 - VBG
 - Electrolytes, CMP
 - Plasma renin activity
 - Aldosterone level
 - Other: EKG changes

Factors Influencing Glucocorticoid Dose

- Cortisol production rate
 - Physiologic unstressed
 - 5-10 mg/m²/day
- Variables affecting cortisol kinetics:
 - Weight
 - Height
 - Body Surface Area (BSA)
 - Individual metabolism/clearance
- Recommend weight or BSA adjusted H.C. dose.
- Recommend double the production rate due to 50% absorption.

Adrenal Insufficiency
Treatment: Maintenance Therapy

- Warning: Do not increase dose of H.C. for emotional stressful days, common cold, exercise.
- Surgery: Patient will require careful pre-operative management with H.C. prior to surgery and procedures requiring sedation or anesthesia. Stress Dose: H.C. 75 – 100 mg/m² X 1 with induction of anesthesia; then, stress dose divided Q6h until stress subsides (usually 24h).

Mineralocorticoid Treatment. Monitor for:
- Orthostatic Hypotension
- Edema
- Salt craving
- K+ and NA
- Maintain plasma renin levels at mid – upper range of normal
Glucocorticoid Therapy. Monitor ACTH levels:
- ACTH levels elevated prior to AM glucocorticoid dose (in primary AI)
- ACTH levels decline rapidly with increasing cortisol levels after dose.
- Aiming for ACTH levels in the normal range will lead to over replacement.
- Aim for ACTH levels < 2-3 times upper limit of normal.

Adrenal Insufficiency (AI) Etiology of Adrenal Crisis
- Underlying Adrenal Insufficiency → Acute Precipitant → Adrenal Crisis
- Precipitants of Adrenal Crisis:
 - Surgery
 - Medical Procedures
 - Anesthesia
 - Infections
 - Alcohol / Drugs
 - Hypothermia
 - MI, CVA, PE

Acute AI: Clinical Features
- Dehydration, volume depletion.
- Hypotension → Circulatory Collapse → Shock
- Coma/Seizures
- Abdominal Pain
- Fever
- Weakness, apathy, depressed mentation.
- Hypoglycemia
- Hyponatremia
- Hyperkalemia

Adrenal Crisis
Adrenal Crisis may occur in the following situations:
- Patients with an undiagnosed primary adrenal disease who is subjected to serious illness or major stress.
- Patients with known primary adrenal insufficiency who do not take stress dosage of glucocorticoids during an illness or in patient with persistent vomiting.

Adrenal Crisis (cont’d)
- Patients who are critically ill with septic shock and who are unresponsive to fluid resuscitation and inotropic medications.
- Patients who are withdrawing from chronic steroid use.
- Less frequently in patients with secondary or tertiary adrenal insufficiency during acute stress or pituitary infarction.

Adrenal Hemorrhage
- Overwhelming sepsis (Waterhouse – Friderichsen Syndrome)
- Trauma or surgery.
- Anti-coagulant therapy.
- Coagulopathy
- Adrenal tumors or adrenal metastases.
- Spontaneous: eclampsia, post-partum complications.
Adrenal Crisis: Diagnostic Evaluation

- Random Cortisol
- ACTH
- Electrolytes
- Glucose
- CMP
- VB6
- CBC + Diff: Normochromic, Normocytic, Eosinophilia.

Adrenal Crisis: Treatment

- Fluid push with normal saline or lactated ringers at 10 – 20 cc’s/kg over 30 – 60 min. May need to repeat.
- Follow with 5% dextrose in normal saline or ½ normal saline.
- Stress Hydrocortisone 75 – 100 mg/m² x 1 IV then divide and give Q6h.
- Specific mineralocorticoid replacement is not required as high doses of glucocorticoids have mineralocorticoid effects.

Adrenal Crisis: Treatment (cont)

- Monitor electrolytes, glucose, BUN.
- Once the dose of glucocorticoids is reduced and patient tolerating fluids, fludrocortisone can be restarted.
- Investigate and treat the precipitant.

Patient Education

- Patients/parents should be educated about:
 - need for life long therapy.
 - stress dosing during illness and/or surgery.
 - wearing a medical alert bracelet or necklace.
 - seeking immediate medical assistance if symptoms worsen so that parenteral glucocorticoid therapy may be administered.
- Endocrinologists must provide patients and/or parents with emergency instruction letter for carrying to ED.
Hypocalcemia in infants and children

John Buchlis MD

Calcium Homeostasis

- Extracellular calcium [Ca]:
 - Critical for cell function and survival
 - Is controlled by fluxes of calcium between
 - Extracellular fluid and skeleton
 - Gut and kidney

• These fluxes are regulated by:
 - Calcium sensing receptor [CaSR] – PTH
 - 1,25 dihydroxy vitamin D
 - Calcitonin

CaSR

• Calcistat – on parathyroid gland
 - Senses the serum ionized calcium
 - Triggers release of PTH even with minute decrease of ionized calcium [iCa]
 - PTH release is suppressed when iCa is high

PTH

Synthesized in chief cells of parathyroid gland

<table>
<thead>
<tr>
<th></th>
<th>BONES</th>
<th>INTESTINE</th>
<th>KIDNEYS</th>
<th>NET EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCIUM</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>PHOSPHORUS</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

Calcitonin

Synthesized and secreted by parafollicular cells of thyroid

<table>
<thead>
<tr>
<th></th>
<th>BONES</th>
<th>INTESTINES</th>
<th>KIDNEYS</th>
<th>NET EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCIUM</td>
<td>↓</td>
<td></td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>PHOSPHORUS</td>
<td>↓</td>
<td></td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>
1,25dihydroxy VitD
Active metabolite of vit D

<table>
<thead>
<tr>
<th></th>
<th>BONES</th>
<th>INTESTINE</th>
<th>KIDNEYS</th>
<th>NET EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCIUM</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>PHOSPHORUS</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Definition of Hypocalcemia

<table>
<thead>
<tr>
<th>NEONATES</th>
<th>Ca (mg/dl)</th>
<th>ICa (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW <1500gm</td>
<td><7</td>
<td><4.6</td>
</tr>
<tr>
<td>>1500gm</td>
<td><8</td>
<td><4.4</td>
</tr>
<tr>
<td>TERM INFANTS</td>
<td><8</td>
<td><4.4</td>
</tr>
<tr>
<td>CHILDREN</td>
<td><8.5</td>
<td><4.8</td>
</tr>
</tbody>
</table>

Neonatal Hypocalcemia

- Early : in first 3 days of life
- Late : After 3 days of life

Early Neonatal Hypocalcemia

- 1. Prematurity and low birth weight
 - Delayed maturation of Vit D pathways
 - ↓ intestinal Ca absorption and mobilization from bones
 - ↑ Ca demand by growing skeleton
 - Reduced total Ca stores
 - Limited PO intake in sick babies

Other causes of Early Neonatal Hypocalcemia

- Maternal hyperparathyroidism
- Severe respiratory alkalosis
 - In hyperventilated infants
- Citrates
 - Chelates Ca- blood transfusions

Early Neonatal Hypocalcemia

2. Birth Asphyxia
 - Excess release of phosphorus from cellular damage
 - ↑ Calcitonin release
 - Use of alkali for resuscitation
 - Limited milk and Ca intake

3. Infants of diabetic mother
 - Magnesium deficiency
 - ↓ PTH secretion and induces resistance to PTH
 - Reduced PTH secretion
 - All other factors mentioned before and often born prematurely and asphyxiated
Late Neonatal Hypocalcemia: After 3 days of life

• Hypoparathyroidism
 – Maternal hypercalcemia
 – DiGeorge syndrome
 – PTH gene mutations

• Phosphorus overload
 • (↑ Ca deposition in bones + relative resistance to PTH)
 – Cow’s milk
 – Fleet enema
 – Renal failure (↓ calcitriol synthesis)

Hypocalcemia beyond the neonatal period

• Hypoparathyroidism
 • ↓Ca, ↑ P, ↑PTH
• Pseudohypoparathyroidism
 • ↓Ca, ↑ P, ↑PTH
• Hypomagnesemia
• Vitamin D deficiency-Nutritional
 • Normal or ↓ Ca, ↓ P, ↓ PTH, ↑ ALP, ↓ 25(OH)D and normal or high 1,25(OH)2D
• Critical illness
• GI loss
• Mediation
 • Chelators- citrate
 • Bisphosphonates reduces osteoclast resorption
 • Furosamide- induces calcitriol
• Acute pancreatitis- calcium deposition + glucagon stimulated calcitonin release

Vitamin D Deficiency

• Vit D deficiency
 – Dietary absence / Malabsorption
• Accelerated loss
 – Impaired enterohepatic recirculation / Anticonvulsants
• Impaired 25-hydroxylation
 – End stage liver disease / INH
• Impaired 1α hydroxylation
 – Renal failure
• Target organ resistance
 – Vit D dep rickets type 2 / Phenytoin

Clinical Presentation

• Nervous system
 – Mild hypocalcemia – hyperreflexia
 – Moderate – muscle cramps, paresthesias of hands, feet, perioral area
 – Severe- tetany, seizures, laryngospasm
 • Chvostek’ sign
 • Trousseau sign

Labs

• CMP
• PTH
• Magnesium
• 25(OH) vit D
• 1,25 dihydroxy vit D
• Amylase + Lipase
• Urine Ca + Creatinine
Treatment

- Symptomatic hypocalcemia:
 - 2ml/kg of 10% Calcium Gluconate IV over 10 minutes, Q6-8hrs prn
 - EKG monitoring for QT interval changes
 - Cardiac monitoring for hypotension and bradycardia
 - Avoid scalp and peripheral veins as extravasation causes tissue necrosis

Post symptomatic Hypocalcemia

- IV:
 - 50-100mg elemental Ca/kg/day ÷ Q6hrs
 - 5-10ml of 10% Ca Gluconate/kg/day ÷ Q6 or continuous diluted in IV fluids
- Oral:
 - 50-100mg elemental Ca/kg/day ÷ Q6
 - CaCO3 0.5-1ml/kg/day
- Vit D for older babies with persistent hypocalcemia
 - Rocaltrol 0.5-2mcg Po daily or IV 0.05mcg/kg/day x 5days if symptomatic

Treatment continued

- Hypomagnesemia
 - For emergencies [seizures]
 - 20-100mg/kg/dose Mag sulfate q4-6hrs prn IV/IM
 - Nonemergencies
 - Neonates: 25-50mg/kg/dose (0.2-0.4meq/kg/dose) q8-12hrs for 2-3 doses IV
 - Children: 100-200mg/kg/dose (10-20mg elemental mag/kg/dose) PO QID OR
 - 25-50mg/kg/dose q4-6hrs IV/IM for 3-4 doses, max single dose 16meq=2grs

Graves Disease

- Most common cause of thyrotoxicosis in children and adolescents
- Incidence – 1: 10,000 children
- May begin in infancy
- Incidence increases sharply in adolescence
- 6-8 times more common in females
- Has a genetic basis
- Graves and Hashimotos arise randomly in a genetically predisposed population

Pathogenesis

- TSH stimulating immunoglobulin (TSI) plays a major role
 - It displaces TSH from membrane TSH receptors
 - Stimulates adenylate cyclase and cyclic AMP production in thyroid follicular cells
- Production of TSI by B-lymphocytes is a secondary response involving T-lymphocytes
Clinical Features

• Insidious onset
 – Increasing nervousness, palpitations, weight loss despite increased appetite, muscle weakness
• Size of thyroid gland is highly variable
• Exophthalmos is present in 1/3rd of children
• Staring (retraction of upper lid by sympathetic hyperactivity)

Laboratory Diagnosis

• ↑ Free T4
• ↑ T4
• ↑ Total T3
• Suppressed TSH (usually <0.04mu/l)
• ↑ TSI
• ↑ 24hr uptake

Neonatal thyrotoxicosis

• Placental transfer of maternal TSH receptor antibodies (TRABs)
 – TRABs can inhibit thyroid hormone production (TBII)
 – Can stimulate thyroid hormone production (TSI)
• TSI may persist in a mother even:
 – Post surgical
 – Medical ablation of thyroid gland

Neonatal thyrotoxicosis

• Rare causes:
 – McCune Albright syndrome
 – Activating mutation of TSH receptor
• Is associated with:
 – Fetal loss
 – Prematurity
 – IUGR
 – High mortality rate (12-20%)-usually from heart failure

Clinical Presentation

• Usually presents within first ten days of life
• Delayed presentation, if coexisting maternal stimulating and blocking antibodies
• Signs and Symptoms:
 – Poor feeding, vomiting, weight loss
 – Irritability
 – Tachycardia, bounding pulses, arrhythmia, HTN, heart failure-cardiovascular compromise being main cause of mortality
History
- **Risks for neonatal thyrotoxicosis:**
 - If mother has past history of thyrotoxicosis
 - Presence and titers of maternal TSI in 3rd trimester (>350%, normal is 130%)
- **Maternal TSI is cleared in the newborn within 3 months after birth**
- **Breast feeding**
 - Is permitted unless mother is on high doses of antithyroid meds
 - Could worsen neonatal thyroid disease secondary to transfer of TRABs in breast milk

Physical Examination
- Goiter
- Eye signs [exophthalmos, lid retraction]
- Craniosynostosis, cerebral ventricular enlargement, microcephaly
- Metabolic effects: diarrhea, sweating, flushing
- Hepatomegaly, thrombocytopenia

Investigations
- T3, T4, FreeT4, TSH immediately after birth and close monitoring in 1st week of life
- TSI or TBII
- Thyrotoxicosis could be delayed for few days if mother was on antithyroid medications
- ECHO for heart failure

Management
- **Carbimazole or Methimazole**
 - Inhibit thyroid peroxidase
 - Initial dose 0.25mg/kg TID
- **Propanolol**
 - ↓ HR, ↓ BP, ↓ myocardial contractility
 - Inhibits peripheral conversion of T4 to T3
 - Initial dose 0.25mg/kg Q6H

THYROID STORM
- One of the most critical endocrine emergencies
- Reflects the extreme manifestation of thyrotoxicosis
- Incidence <10% of patients admitted for thyrotoxicosis
- Untreated thyroid storm is fatal
- Mortality rate 20-30%

Management
- **Potassium iodide - Lugol’s solution**
 - 8.3mg iodine per drop
 - Raises plasma iodide concentrations
 - Inhibits iodide organification
 - Most rapidly effective treatment
 - Neonatal dose 0.05-0.1ml TID
- **Glucocorticoids**
 - Short term treatment
 - Inhibit peripheral conversion of T4 to T3
 - Inhibit thyroid hormone secretion
• Most common underlying cause of thyroid storm is:
 – Graves disease (untreated or partially treated)
 – Can also occur with a solitary toxic adenoma
 – Or a toxic multinodular goiter

• Rare causes of thyrotoxicosis leading to storm:
 – Hypersecretory thyroid carcinoma
 – TSH secreting pituitary adenoma
 – A-interferon, interleukin-2 for viral hepatitis and HIV
 – Hyperthyroidism aggravated by iodine exposure (contrast dye or amiodarone)

• Hypothesis
 • Increase of free thyroid hormones:
 – Free T4 levels higher in storm patients than thyrotoxicosis
 • (Brooks and colleagues)
 – Total T4 was similar
 – No arbitrary cutoff values for T3 or T4 to differentiate storm from thyrotoxicosis
 – Thyroid storm is a clinical diagnosis
 • Diagnostic criteria by Burch and Wartofsky scale
 – It is best to treat aggressively rather than trying to find out if patients meet the criteria for storm

• Triggers
 • In the past:
 – Thyroid surgery in patients with uncontrolled hyperthyroidism
 • Now:
 – Severe infection or sepsis
 • Other:
 – Trauma
 – MI
 – DKA
 – Pulmonary thromboembolism
 – Radioiodine therapy
 – Pseudoephedrine and salicylates (↑ Free T4 levels)

<table>
<thead>
<tr>
<th>THERMOREGULATORY DYSFUNCTION: Temperature</th>
<th>SCORING</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥104</td>
<td>30</td>
</tr>
<tr>
<td>101-103.9</td>
<td>25</td>
</tr>
<tr>
<td>100-101.9</td>
<td>20</td>
</tr>
<tr>
<td>99-100.9</td>
<td>15</td>
</tr>
<tr>
<td>CNS EFFECTS</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Mild (agitation)</td>
<td>10</td>
</tr>
<tr>
<td>Moderate (delirium, psychosis, extreme lethargy)</td>
<td>20</td>
</tr>
<tr>
<td>Severe (seizures, coma)</td>
<td>30</td>
</tr>
<tr>
<td>GI-HEPATIC DYSFUNCTION</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Moderate (diarrhea, nausea/vomiting, abdominal pain)</td>
<td>10</td>
</tr>
<tr>
<td>Severe (unexplained jaundice)</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARDIOVASCULAR DYSFUNCTION: Tachycardia</th>
</tr>
</thead>
<tbody>
<tr>
<td>110-119</td>
</tr>
<tr>
<td>120-129</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
</tr>
<tr>
<td>Absent</td>
</tr>
<tr>
<td>Mild (pedal edema)</td>
</tr>
<tr>
<td>Moderate (bibasilar rales)</td>
</tr>
<tr>
<td>Severe (pulmonary edema)</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
</tr>
<tr>
<td>Absent</td>
</tr>
<tr>
<td>Present</td>
</tr>
<tr>
<td>Precipitating event</td>
</tr>
<tr>
<td>Absent</td>
</tr>
<tr>
<td>Present</td>
</tr>
</tbody>
</table>

• Other lab findings:
 – Hyperglycemia
 • Increased glycogenolysis
 • Catecholamine inhibition of insulin release
 – Hypercalcemia (bone resorption)
 – Leukocytosis and elevated liver enzymes
 – High serum cortisol (stress)

– A score of ≥ 45 → highly suggestive of thyroid storm
– Score of 25-44 → suggestive of impending storm
– Score of <25 → unlikely to represent storm
Management

- These patients require aggressive treatment in ER and continued care in ICU

Inhibition of new hormone production:

- 1st line therapy
- Methimazole
 - 20-25mg Po q6hr
- Propylthiouracil
 - Not recommended for children due to hepatotoxicity
 - Also ↓T4-T3 conversion
 - 200-400mg PO q6-8hr

Inhibition of thyroid hormone release:

- Administer at least 1hr after thionamide
- Potassium iodide SSKI
 - 5drops PO q6hr
- Lugol’s solution
 - 4-8drops PO q6-8hr
- Sodium ipodate (308mg iodine/500mg tab)
 - 1-3g PO qd
 - Also inhibits T4-T3 conversion
- Iopanoic acid
 - 1g PO q8hr for 24 hrs then 500mg PO q12hr
 - Also inhibits T4-T3 conversion

Beta-adrenergic blockade:

- Propanolol
 - 60-80mg Po q4hr OR 80-120mg q6hr
 - Also ↓T4-T3 conversion
- Cardioselective agents:
 - Atenolol: 50-200mg PO qd
 - Metoprolol: 100-200mg PO qd
 - Nadolol: 40-80mg PO qd
- IV: when oral agents not indicated or consider in CHF
- Esmolol: 50-100μg/kg/min

Supportive treatment:

- Acetaminophen
 - For hyperthermia, preferred over salicylates
 - 325-650mg PO/PR q4-6hr prn
- Hydrocortisone
 - When hypotensive to treat possible concomitant adrenal insufficiency
 - ↓T4-T3 conversion and for vasomotor stability
 - 100mg IV q8hr

Alternate therapies:

- Lithium carbonate
 - Used when thionamide or iodide therapy contraindicated; levels should be checked
 - Blocks release of hormone + inhibits new hormone synthesis
 - 300mg PO q8hr
- Potassium perchlorate
 - Used in combination with thionamide in type II amiodarone induced thyrotoxicosis
 - Inhibits iodide uptake by gland
 - 1g PO qd
- Cholestyramine
 - Used in combination with thionamide
 - Reduces reabsorption of thyroxine from enterohepatic circulation
 - 4g PO qid

Thank you