Vitamin D: Rickets and Beyond

Kathleen Bethin, MD, PhD
Pediatric Endocrinology
WCHOB
December 12, 2008

Vitamin D

- Not really a vitamin
- Prohormone produced photochemically in the skin
- Closely related to classical steroids

Vitamin D Sources

- Sunlight
- Diet
 - Very few foods- best is fatty fish
- Dietary Supplements
 - In US dietary vitamin D is primarily from supplemented foods
 - Milk (100 IU / 8 oz)
 - Some dairy products
 - Some cereals
 - Calcium-fortified juices

Vitamin D Effects on Calcium and Phosphorus

- Vitamin D Sufficient State (> 20 ng/mL)
 - Net intestinal calcium absorption is up to 30%
 (60-80% during rapid growth)

Vitamin D Deficiency

- Intestinal absorption is 10-15%
- Decrease in phosphate absorption
- Low Ca++ → ↑ PTH → ↑ Ca++ reabsorption in kidneys and ↑ 1,25 dihydroxyvitamin D, ↑ phos in urine
- This leads to ↓ Calcium×Phosphorus product resulting in ↓ bone mineralization
- Low phosphorus causes failure of normal apoptosis in chondrocytes
Vitamin D Deficiency Effects on Bones

- Rickets
 - Defective mineralization of cartilage in epiphyseal growth plates of children
- Osteopenia/ osteoporosis
- Osteomalacia
 - Disordered mineralization of new bone matrix in adults

Case 1

- 17 month old African American male
- Rickets seen on skeletal survey done to r/o abuse
- Breastfed as infant, drinks juice instead of milk

Labs

- PTH 295 (12-72)
- Calcium 8.2
- Phosphorus 1.6
- Alkaline Phosphatase 1455
- 25 OH-vitamin D <7
- 1,25 dihydroxy vitamin D 64.8 (normal)
- Vitamin D started (4000 IU PO QD)

Follow-up in Endocrine

- Exam notable for short stature, rachitic rosary, metaphyseal flaring
- Repeat Labs on therapy
 - PTH 654
 - Calcium 7.8
 - Phosphorus 2.6
 - Alkaline Phosphatase 1992
- Calcium carbonate added to therapy

Case 2

- 2 ½ year old AA male presented to OSH in tetany
 - Calcium 5.7, Phos 6.7
 - Given IV Calcium
- Transferred to WCHOB
- History significant for
 - drinking juice instead of milk
 - complaint of foot pain for several days prior to admission
 - history of severe dental caries

Exam

- Poor enamel formation, numerous caries
- No bossing
- No rachitic rosary
- No metaphyseal flaring
Initial Labs at WCHOB

- Calcium 5.4
- Phos 5.9
- Alkaline Phosphatase 360 (74-270)
- PTH 164 (12-72)
- 25-hydroxy Vitamin D 10 (9-43)
- 1,25 dihydroxy Vitamin D 65 (15-65)

Treatment

- Vitamin D
- Calcium

Case 3

- 14 y/o white female complaining of knee pain
- X-ray demonstrated normal knees but severely demineralized
- PMD initiated bone work-up
- History significant for not drinking milk and no vitamin supplements. Does eat yogurt and cheese

Labs

- Alkaline phosphatase 119 (42-121)
- Calcium 10.1
- PTH 112 (12-65)
- 25-OH Vitamin D 9.3 ng/mL (32-100)

Exam

- Height at 50-75%
- Weight at 10-25%
- Normal exam

Therapy

- 50,000 IU vitamin D PO x1
- 400 IU vitamin D daily
- Calcium carbonate 1000 mg
Follow-up Labs

- iPTH 81 (12-72)
- Alkaline Phosphatase 98 (64-480)
- Calcium 10.1
- 25-OH Vitamin D 32 ng/mL (32-100)
- Vitamin D increased to 800 IU per day

Signs of Rickets

- Widening of the wrists and ankles
- Genu valgum or varum
- Rachitic rosary
- Craniotabes
- Frontal bossing
- Delayed fontanel closure
- Delayed tooth eruption
- Poor quality of enamel—caries
- Poor growth
- Increased susceptibility to infection

Symptoms of Rickets

- None
- Irritability
- Gross motor delays
- Bone pain

A 30-month-old girl had had progressive bowing of the legs since she began walking at the age of 11 months

Vitamin D-deficiency rickets at presentation and 3 mos after vit D and Ca therapy in a 1-year old black boy

Hypocalcemia Due to Rickets
- Seizures
- Tetany
- Hypocalcemia may also present with apnea, stridor, wheezing, hypotonia, muscle weakness or brisk reflexes
- Most frequent in infancy and adolescence when increased demand for calcium by rapid growth leads to hypocalcemia before bone demineralization

Hypocalcemia may also present with apnea, stridor, wheezing, hypotonia, muscle weakness or brisk reflexes
- Most frequent in infancy and adolescence when increased demand for calcium by rapid growth leads to hypocalcemia before bone demineralization

Most frequent in infancy and adolescence when increased demand for calcium by rapid growth leads to hypocalcemia before bone demineralization

Rickets
- Failure of mineralization of growing bone and cartilage
- First described in the 17th century
- Turn of the 20th century 80% of children with rickets
- Around the 1920’s, it was recognized that cod liver oil and sunlight prevented and treated rickets

Rickets continued
- Once Vitamin D identified rickets almost disappeared in industrialized nations
- 21st century- rickets has been re-emerging

Why the Resurgence in Vit D Deficiency
- Majority of Vitamin D from sunlight
- < 10% from diet
- Recommendations to avoid sun to prevent skin cancer
 - SPF 15 blocks 99% of vitamin D production
- Lifestyle
Sunlight & Vitamin D

- Concentration of melatonin regulates amount of UV-B penetrating epidermal cells
- MED minimal erythema dose – amount of UVR that causes slight pinkness
- Exposure of 40% of the body to ¼ MED generates 1000 IU vitamin D per day

Sunlight & Vitamin D - 2

- UV-B is shorter than UV-A and is prone to scatter before 10 AM and after 3 PM
- Exposure time in Southern states in the summer at solar noon to achieve 1 MED is 4-10 minutes for pale skin & 60-80 minutes for dark skin

Vitamin D as a function of latitude

Moan J. et al. PNAS 2008:105:668-673

Prevalence of low serum 25-hydroxyvitamin D concentrations from NHANES 2000-2004 by cut-off

Yetley, E. A Am J Clin Nutr 2008;88:558S-564S

20,000 individuals

Vitamin D in Breast Milk

- In a vitamin D sufficient mother 15-50 IU/L breast milk
- Assuming intake of 750 ml/day = 11-38 IU/day vitamin D

Vitamin D in Formula

- Infant formulas in US are mandated to contain 40 to 100 IU vitamin D per 100 kcal
- Assuming 750 ml/day this is 200-500 IU/day
Old AAP Guidelines

- 2003 AAP recommended 200 IU vitamin D per day for infants beginning at 2 months, children and adolescents

2003 AAP Guidelines

- 200 IU per day maintains 25-OH vitamin D at above 27.5 nmol/L (11 ng/dl) and prevented signs of vitamin D deficiency in older studies
- These recommendations were made despite knowing since 1918 that a teaspoon of cod liver oil prevented and treated rickets 1 tsp = 400 IU vitamin D

Redefining Vitamin D Deficiency

- New information from adults has redefined vitamin D deficiency as less than 50 nmol/L (20 ng/ml)
- Vitamin D insufficiency is >50 nmol/L to 80 nmol/L (32 ng/ml)
- Normal values in children are unknown, but 400 IU per day of vitamin D will maintain 25-OH vitamin D levels above 50 nmol/L

New AAP Guidelines for Vitamin D

- Breastfed / partially breastfed infants-supplement with 400 IU/day of vitamin D within first few days of life
- Continue until taking 1 liter vitamin D fortified formula/ milk
- All children/ adolescents ingesting less than 1 L vitamin D fortified milk should take 400 IU vitamin D supplement

New AAP Guidelines for Vitamin D - 2

- 25-OH vitamin D should be > 50 nmol/L (20 ng/ml)
- Children with chronic fat malabsorption or taking antiseizure medications may need higher doses of Vitamin D

Growth in the number of articles published each year with the term vitamin D in the title or abstract, as reported in PUBMED

Norman, A. W Am J Clin Nutr 2008;88:491S-499S
Tissues that express the vitamin D receptor for the steroid hormone 1, 25-dihydroxyvitamin D₃

- Adipose
- Muscle, embryonic
- Adrenal
- Muscle, smooth
- Bone
- Osteoblast
- Bone marrow
- Ovary
- Brain
- Pancreas β cell
- Breast
- Parathyroid
- Cancer cells
- Parotid
- Cartilage
- Pituitary

Causes and consequences of vitamin D deficiency

Immune Roles

- VDR is present in activated human mononuclear leukocytes and lymphocytes
- 1,25-dihydroxyvitamin D₃ regulates release of cytokines from lymphocytes
- 1,25(OH)₂D₃ induces cathelicidin in macrophages
- Toll-like receptor activation of human macrophages upregulates expression of the VDR and the 25(OH)D₃-1-hydroxylase genes
- Skin injury enhances antimicrobial peptide synthesis through the VDR and the 25(OH)D₃-1-hydroxylase in keratinocytes

Vitamin D & Autoimmune diseases

- Polymorphisms in the VDR are associated with –
 - T1DM
 - Addison’s disease
 - Hashimoto’s thyroiditis
 - Graves disease
Vitamin D & T1DM

- Norwegian study found the use of cod liver oil but not other vitamin D supplements during 1st year of life decreased risk of T1DM RR = 0.74 (95% CI 0.56-0.99)
- Meta-analysis Vit D supplementation may provide protection against T1DM
 - No randomized control studies
 - 5 observational studies

Birth-cohort study in Northern Finland

- All children expected to be delivered in 1966 were enrolled (n=12,058)
- Recommended dose of Vitamin D = 2,000 IU/day
- 88% of children were given vitamin D regularly during the 1st year of life
- Children receiving the recommended dose of Vit D had a RR of 0.22 (95% CI 0.05-0.89) for developing T1DM before 1998

Role in Pancreatic β cells

- Vitamin D deficiency inhibits pancreatic secretion of insulin and 1,25(OH)2D3 restores it
- 25(OH)D concentration positively correlates with insulin sensitivity
- Calbindin-D28K protects β cells from cytokine mediated cell death
- Vitamin D deficiency in early life accelerates development of diabetes in NOD mice

Cancer incidence and death rates as a function of latitude

Moan J. et.al. PNAS 2008;105:668-673
Vitamin D Deficiency and Cardiac Disease

Incidence of CVD event and low total vitamin D levels

- Low circulating 25-hydroxyvitamin D levels
- Low cellular calcitriol concentrations

Matrix GLA Protein Synthesis
Renin-Angiotensin System

Relation between Serum 25-Hydroxyvitamin D Concentrations and Mean (+/-SE) Serum Concentrations of Parathyroid Hormone in the Study Patients

Vitamin D Levels Associated With CVD

1789 Offspring from Framingham study w/o CVD F/U 5.4 yrs

- HTN

Role in Brain

- The VDR and 1-hydroxylase are distributed in human brain
- Vitamin D deficiency in utero alters adult behavior in mice
- Fetal deprivation of vitamin D₃ could be associated with adverse neuropsychiatric outcomes
- Prenatal and chronic postnatal vitamin D deficiency in rats impairs prepulse inhibition of acoustic startle

Vitamin D and Blood Pressure

- In humans 1,25 (OH)₂ vitamin D inhibits renin which may decrease BP
- Increasing UVB radiation by tanning 3 times per week for 3 months ↑ 25(OH) vitamin D 180% and ↓ SBP 6 mm Hg
- In a small RCT in pts T2 DM with low vitamin D levels administration of 100,000 IU vitamin D ↓ SBP 14 mm Hg and improved forearm blood flow

Conclusions

- Vitamin D plays important roles in general health beyond bone health
- Old AAP recommendations for Vitamin D supplementation were too low
- Experts disagree on the proper level of Vitamin D required for optimal health
- At least 400 IU per day of Vitamin D is optimal
- 800-2000 IU per day may be necessary