Mitochondrial Cytopathies in Children: Pediatric Grand Rounds, Buffalo, 2012

Mark Tarnopolsky, MD, PhD.
Professor of Pediatrics and Medicine (Neuromuscular and Neurometabolic Disorders), McMaster University, Hamilton, ON.

Disclosure

- Wyeth – research funding 2009-2010.
- GSK - speaker honoraria 2011.
- Genzyme - research funding, 2011.

Mitochondrial Disorders – Review.

- 1.5 billion y ago – purple photosynthetic bacteria.
- Has its own mtDNA (37 genes).
- Most proteins encoded by nDNA - ~ 1,500 total.
- Intermediary oxidative metabolism (ETC).
- Apoptosis.
- ROS production.
- Inflammasome activation.
- Linked to telomere length.

Electron Transport Chain

- Formation ETC under dual genomic control.
- Series circuit I-III-IV and V conserved in vertebrates (13 sub-units).

Human mtDNA

- 16,569 base pairs.
- Encodes for: 22 tRNA, 2 rRNA, 13 polypeptides.
- Maternal inheritance.
- Higher mutation rate (lack of histones).
- 2 – 10 copies/mito.
- Up to 1,000s/cell.

Mitochondrial Cyopathies

- Molecular etiology
 - nuclear defects
 - mtDNA defects
 - Deletions, point mutations
 - Maternal vs sporadic
- Heteroplasmia
- Threshold effect

From Zeviani and Di Donato, Brain 127:2153, 2004
Mitochondrial Dysfunction

Cytochrome b mutation

ATP
Alt. E. Source
ROS (free radicals)
Lactate
Mito proliferation
Apoptosis
Anti-oxidant enzyme

Mitochondrial Disorders

- Usually refers to disorders affecting the ETC.
- First mutations were discovered in the mtDNA as deletions (KSS) and LHON (1778) and MELAS (3243) in 1988.
- There are now > 100 known mtDNA mutations and an increasing number of nDNA mutations.

Mitochondrial Diagnosis

- Multi-system history.
- Family history (maternal – rule IN).
- Lactate (SEN = 0.65; SPEC > 0.90).
- Urine – organic acids (ethylmalonic, 3-methylglutaconic, lactate, TCAi).
- Plasma amino acids (alanine).
- Exercise testing.
- MRI/MRS.
- Muscle histology/EM.
- Muscle enzymology.
- Specific point mutations.

Clinical Phenotypes in Adults

- Mitochondrial Encephalomyopathy
- Lactic Acidosis and Stroke-Like Episodes.
- Chronic Progressive External Ophthalmopathy.
- Kear-Sayre Syndrome.
- Leber’s Hereditary Optic Neuropathy.
Clinical features of mito. in children

- Seizures
- Developmental delay or regression
- ADHD
- FTT
- Recurrent encephalopathy
- Cardiomyopathy
- Hypotonia

DIFFERENTIAL DIAGNOSIS IS HUGE

My general approach in pediatrics.

- History suggestive of mitochondrial disease but no characteristic pattern:
 - Blood (lactate, ammonia, amino acids, LFTs).
 - Urine (organic acids, creatine/creatinine ratio).
- +ve screen or high clinical index:
 - Muscle biopsy.
 - + CNS = L/P (L/P ratio, neurotransmitters and folate) and MRI with MRS.

My general approach.

- Muscle biopsy (+ fibros +/- punch):
 - LM – MGT, COX, SHD, ORO + routine.
 - EM – lipid, pleomorphic, electron densities, PCls.
 - Enzymes (fresh vs frozen – know the norms).
 - Deletions and depletion.
 - Keep a piece for mtDNA.

Muscle Biopsy

Tarnopolsky et. al, Muscle and Nerve, 2011.

Measuring mitochondrial function.

 - Functional assays on isolated mitochondrial fractions (Clark electrode, Oroboros, Seahorse).

3. VO_{2max} (maximal oxygen consumption) ~ human state III respiration.
Mitochondrial Diagnosis – Genetic.

- mtDNA point mutation analysis (MELAS 3243, LHON 11778, MERRF 8344, etc.).
- Deletions (LR-PCR, qPCR, Southern):
 - Single – KSS, CPEO.
 - Multiple – mtDNA maintenance (POLG1, OPA1, twinkle, etc.).
- nDNA mutations (SURF1, SCO2, NDUFV1, POLG1, twinkle, etc.).
- mtDNA (maternal inheritance – non-targetted approach):
 - Sequencing, denaturing HPLC ?

Mitochondrial disorders in children

- N = 400 children referred for mitochondrial disease – N = 113 children with disease according to the Walker criteria (mean age at presentation = 40 mo).
- 32% complex I; 26% combined; 19% COX.
- mtDNA mutations = 11.5%.
- 40% cardiomyopathy (58% hyper, 29% dil and 13% non-compaction).
- 60% primarily neuromuscular.
- Survival =
 - + cardiomyopathy = 18% @ 16 y.
 - - cardiomyopathy = 95% @ 16 y.

Mitochondrial disorders in children

- mtDNA depletion (polg, DGUOK, TK)
- Leigh’s disease I (NDUF), II, IV (SURF-1), PDH, mt8993
- Congenital lactic acidosis
- Cardiomyopathy
- MNGIE syndrome (thymidine phosphorylase, TYMP)
- Alper’s Syndrome (polymerase gamma mutations)
- CoQ10 deficiency (ataxia and myopathy)
- Isolated ataxia (IOSCA (twinkle), MIRAS, CoQ10)
- Isolated complex I deficiency (most common)

Rule In/Rule Out Mimics – Children.

- Complex I deficiency:
 - Dystrophinopathy with skewed X-inactivation.
 - Novel Chr. gain/del. detected by Chr. microarray.
 - Rett syndrome (MECP2 mutation).
 - Nemaline rod myopathy (ACTA1 mutation).
 - P.W.S. (abnormal methylation pattern).
 - Zellweger (4X increase in VLCFFAs – PEX1-P).
 - SCN1A mutation (Dravet’s syndrome).
 - CDG.

Encephalo-hepatopathy

- Often triggered by concurrent viral infection.
- Valproate is a common medication trigger.
- Transaminitis, α-feto-protein.
- Specific causes:
 - DGUOK, POLG1, MPV17, SCO1, BCS1L
 - RRM2B, SUCLG1, C10ORF (twinkle).

Human disorders due to polymerase gamma mutations

- ~ 200 mutations known in catalytic, linker and proof reading regions.
- Alper’s syndrome (AR) – psycho-motor regression, hepatopathy, encephalopathy.
- AR spino-cerebellar ataxia and neuropathy – onset in middle age.
- AD CPEO – later onset CPEO +/- depression.
- AR SANDO – sensory neuropathy, ataxia, PEO, dementia.
mtDNA depletion/+/- deletions

- POLG1 (MIRAS, Alper’s)
- DGUOK (hepatic)
- TK2 (encephalo-myo-pathic)
- C10ORF (twinkle) (encephalopathic, IOSCA)
- SLC25A4 (encephalomyopathy)
- MPV17 (hepatic involvement).
- SULCA2, SULCG1 (encephalo-hepato-myopathy)
- RRM2B (encephalomyopathy/myopathy)

Coenzyme Q10 Deficiency

- Suspect if I + III and II + III are low.
- Defect biosynthesis – COQ2, PDSS1, aprataxin.
- Myopathic-plus form: myoglobinuria, encephalopathy, RRR and lipid storage myopathy
- Myopathic only form: RRF + lipid myopathy.
- Cerebellar forms: pyramidal, neuropathy, +/- Sz.
- Rx: high doses of CoQ10 (25 mg/kg/d).

Case 1 - ? SCA

- 42 y old female.
- Dx: AD-SCA?.
- Phenotype: progressive ataxia, dysarthria, sensory neuropathy + mild pes cavus, mild cerebellar atrophy on MRI.
- SCA 1,2,3,6,7,8,17, FA – ve - lactate normal.
- Asked to see her daughter and grandson (age 2) – both with severe ataxia and global developmental delays.

mtDNA Sequencing

- C9035T (Leu → Pro, ATPase 6): L is conserved in all mammals, birds, snake, yeast.
- Not found in over 100 controls.
- Screened > 50 sporadic ataxias.
- Cybrids: ATP (50 %); ROS is 7 fold higher; rescued by COQ10 and vitamin E.

Case 2 - ? Fatty acid oxidation defect

- 6 y old male – admitted to hospital with 2 day history of “groggy and sleepy” – vomiting.
- CK = 1,500 iU (N < 220).
- Rx – rehydration with glucose and saline.
- Better in 3 days and CK was 500 iU.
- Development = walk = 12 months; BUT poor endurance (sore stomach, SOB), not jump.
? Fatty acid oxidation defect

- Fhx: mom and dad – N; large family no NMD but a remote great aunt on dad’s side = DM1; younger brother doing “much better” and almost same weight @ 2 y of age.
- Pmhx: strabismus surgery @ 3 y of age.
- O/E: MS = N, irritable, CN = N (epicanthal folds), M = mild hypotonia, generalized proximal weakness, Sensory/MSR = N; left toe upgoing, skin = N.

? Mitochondrial disease

- Labs: CK – returned to normal, lactate normal X 3, organic acids= N (ketones), acyl-carnitine = N, total carnitine = low (free), ammonia, LFTs, renal all N.
- Muscle Biopsy: borderline RRF, EM = pleomorphic, complex I + III (< 30 % of LLN).
- Diagnosis: Possible/probable mitochondrial disease.
- F/U: MRI normal age 9 y, ADHD Dx, WPW age 13 y, lactate = 7.8 mmol/L.

? Mitochondrial disease

- Repeat Biopsy (age 13 y): 20 % RRF (COX +ve), many paracrystalline inclusions, complex I + III ~ 40 % of LLN; deletion analysis = N.
- mtDNA analysis (dHPLC + SEQ.):
 - blood = few polymorphisms; muscle = heteroplasmic 15161 T>C in cytochrome b (highly conserved); mom = negative by Seq. and normal histology and ETC.

Mitochondrial Dysfunction

- Cytochrome b mutation
- ATP
- Alt. E. Source
- ROS (free radicals)
- Lactate
- Mito proliferation
- Apoptosis
- Anti-oxidant enzyme

Mitochondrial Disease Rx Strategies

General Issues
- Avoid stressors (heat, dehydration, prolonged fasting, excessive exercise, VPA, statins, etc.).
- Check sleep (abnormal delta waves, apnea, no stage 3 or 4, nocturnal myoclonus, Sz, RLS) – melatonin (0.1 mg/kg/d).
- Check for contractures, treat spasticity.
- Optimize nutrition for growth – G-tube is often very beneficial if sub-optimal intake is present (also allows for optimal delivery of supplements and medications).

Specific
- High cholesterol = Fibric acid (PPARα agonist) – not statins (deplete CoQ10).
- Cochlear implants – hearing loss.
- MNGIE (allogenic BMT (reduce thymidine)).
- CPEO – blepharoplasty.
- L-arginine – hypocitrullinaemia and hypoargininemia in MELAS (30 g in early phase, Neurology, 2005).
Mitochondrial Disease Rx Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Formula/Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Defect</td>
<td>CoQ10, succinate, riboflavin.</td>
</tr>
<tr>
<td>Reduce Lactate</td>
<td>Dichloroacetate, thiamine.</td>
</tr>
<tr>
<td>Anti-Oxidants</td>
<td>Vit E, lipoic acid</td>
</tr>
<tr>
<td>Alternative Energy</td>
<td>Creatine monohydrate</td>
</tr>
<tr>
<td>Exercise training</td>
<td>Aerobic vs strength</td>
</tr>
<tr>
<td>Vasodilatation</td>
<td>L-arginine</td>
</tr>
<tr>
<td>Folate deficiency</td>
<td>Folate, folic acid</td>
</tr>
<tr>
<td>Nucleotide precursors</td>
<td>Triacetyluridine</td>
</tr>
</tbody>
</table>

Creatine

- **glycine**
- **arginine**
- **methionine**

\[C \quad H_2N \quad C \quad NH_2 \]
\[H_3C \quad N \quad CH_2 \quad COO^- \]

Creatine in the body:

- **Exogenous consumption:** (~ 1 g/day)
- **Skeletal Muscle (~ 90% of Creatine)**
- **Creatinine**

Creatine in Mitochondrial Disorders.

<table>
<thead>
<tr>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat-free mass</td>
</tr>
<tr>
<td>Strength/Power</td>
</tr>
<tr>
<td>Neuro-toxicity (ALS, HD, PD)</td>
</tr>
<tr>
<td>Anti-oxidant (direct and indirect)</td>
</tr>
<tr>
<td>Anoxia protection</td>
</tr>
<tr>
<td>Mitochondrial function (mdx, ? humans)</td>
</tr>
<tr>
<td>Apoptosis/ΔΨm (traumatic brain injury)</td>
</tr>
</tbody>
</table>

Creatine in Mitochondrial Disorders.

- N = 7, RCT, cross-over,
- CrM 10g/d X 2 week and 4 d/d X 1 week:
- Handgrip and dorsi-flexion power.
- VO2max.

Not performing well?

- 26 y male triathlete.
- Study volunteer.
- EM for lipids.
- Surprised to find paracrystalline inclusions in muscle.
- Discovered a novel cytb “mutation” (G15497A).

Tarnopolsky MA, et al, Muscle Nerve, 2004.
Is the sequence variant pathogenic?

Cybrid generation:
- Expose to stressors:
 - Oxygen and glucose (OGD).
 - SIN1 – peroxynitrite donor.
- ? Protection from Rx?

1. Deplete mito. in immortalized cell (EB).
2. Enucleate the patient’s + con. cells (centrifuge).
3. Fuse cells with PEG.

Mitochondrial Cocktail

- 2 month RCT, 2 month W/O, cross-over: CoQ10 120 mg bid + 150 mg Vit E + creatine 0.1 g/kg/d + LA 300 mg bid in 16 patients with definite mitochondrial disease.

CoQ10 (mg/L), P < 0.001
8-OH-2dG (ng/g creatinine), P = 0.065

Mitochondrial Cocktail

Lactate (mmol/L), P < 0.05
8-isoprostanes (umol/g creatinine), P < 0.05

Putting an END to AGING...

3 Groups of POLG (3 months > 8 months):

Safdar et al., PNAS, 2011.
Exercise attenuates many aging features. Safdar et al., PNAS, 2011.

Endurance Exercise Promotes Systemic Mitochondrial COX Activity

P < 0.05

Safdar et al., PNAS, 2011.

Endurance Exercise Restores Skin Ultra-Structure

Safdar et al., PNAS, 2011.

Endurance Exercise Lowers Inflammation and Restores Growth Factors

P < 0.05

Abadi and Safdar et al., unpublished

Thanks

The lab:
Adeel Safdar
Dr. A. Abadi
Dr. M. Akhtar
Dr. G. Parise
Mr. D. Ogborn
Mr. J. Crane

Collaborators:
Dr. S. Melov
Dr. T. Prolla
Dr. A. Hubbard
Dr. J. Bourgeois
Dr. J. Thompson
Dr. S. Smith
Dr. G. Kujoth
Dr. B. Kaufmann

Warren Lammert and Family

Institute of aging.

McMaster Children’s Hospital and Hamilton Health Sciences Foundation.