Central Venous Line Related Deep Vein Thrombosis in Pediatric Patients

Matthew Barth, MD
Pediatric Hematology/Oncology Fellow
QA/QI Grand Rounds
October 30, 2009

Pediatric Venous Thrombosis
- Epidemiology
- Risk factors
- CVL related DVT
 - Background
 - Literature
 - WCHOB
- Thrombosis
 - Diagnosis/management
 - Complications/Outcomes

Venous Thrombosis
- Balance exists between prothrombotic and antithrombotic factors within blood
- Endothelium generally has antithrombotic properties
- Certain factors can overcome antithrombotic characteristics of the blood/endothelium
- Various congenital and acquired factors can contribute to a shift in the balance leading to a prothrombotic state

Clotting Cascade

Venous Thrombosis
- Occurs in 2-5% of adult population
- Rates of venous thrombosis lower in pediatrics
 - Decreased thrombin generation
 - Increased antithrombotic effect of vessel wall
- Pediatric thrombosis has bimodal distribution
 - Highest frequency in neonatal period
 - Highest in any age group
 - Second peak in adolescence
- Adolescent females secondary to OCP use and pregnancy
- Increasing frequency/awareness
- Lack of consistent treatment methods and low overall frequency make large studies difficult
Frequency of Pediatric Thrombosis

- With increased awareness/frequency several registry studies attempted to determine overall rate
- General pediatric population
 - van Ommen et al - Netherlands
 - 0.14 per 10,000 children
 - Monagle et al from Canadian registry
 - 0.07 per 10,000 children
- Hospitalized Patients
 - Increased risk in hospitalized patients
 - Canadian registry
 - 5.3 per 10,000 hospitalizations
 - Stein et al US National Hospital Discharge Survey
 - 4.9 per 10,000 childhood years
 - Highest risk noted in NICU patients
 - Up to 24 per 10,000 NICU admissions
 - van Ommen et al – Netherlands
 - 14.9 per 10,000
- Most hospitalized children with VTE have at least one and often multiple identifiable risk factors

Risk Factors for Thrombosis

- Congenital
 - Factor V mutations
 - Prothrombin gene mutation
 - Deficiency of protein C, protein S or antithrombin
 - Elevations of lipoprotein a, homocysteine, factor VII/VIII/IX/XI may also increase risk
- Acquired
 - CVL
 - Most common risk
 - 60-90% of DVTs associated with CVL
 - Malignancy, trauma, surgery, hormone therapy, nephrotic syndrome/renal disease, antiphospholipid syndrome, medications, hemoglobinopathies, PNH

Central Venous Lines

- Most common risk factor associated with development of DVT
- Overall are the cause of majority of DVTs
 - Massicotte et al from Canadian registry
 - 244 cases of VTE
 - 60% associated with CVL
 - Schmidt et al
 - Neonates with non-renal vein thrombosis
 - 89% associated with CVL
- With improved overall survival of critically and chronically ill children use of CVLs has become more frequent
- Leads to increasing rate of DVT in pediatric patients

Literature

- Overall rate of DVT formation in the presence of a CVL varies from institution to institution and by diagnostic methodology/criteria
General Pediatric Population
- Dubois et al
 - Review of 214 pediatric patients with PICC lines placed in their radiology dept
 - 9.3% of patients developed thrombus detected on screening at time line pulled
 - Only 1 symptomatic
- Male et al
 - Prospective cohort study in general pediatric population including 158 children
 - Overall 13% developed thrombus on U/S or venogram
 - Femoral or subclavian lines were found to have statistically higher rate than brachial or jugular (32%/27% vs 12%/8%)
 - No statistically significant difference for type of line (PICC vs tunneled vs non-tunneled), size of line or duration of placement

Pediatric ICU Patients
- DeAngelis et al
 - 76 PICU patients screened with U/S
 - 4% with thrombus
 - All in femoral lines
- Shefler et al
 - 56 PICU patients with femoral lines screened with U/S of IVC
 - 11% with thrombus
 - One symptomatic

Pediatric ICU Patients
- Hanslik et al
 - Review of 90 pediatric patients with congenital heart disease with short term venous catheters
 - Predominantly jugular lines
 - Using combination of venography, U/S and Echo detected thrombus in 28% of patients
- Sheridan et al
 - Review of 289 children in a burn ICU with 1056 venous lines
 - Protocol includes rotating CVL sites weekly
 - Symptomatic DVT developed at site of previous cannulation in 0.6%

Neonatal ICU
- Butler-O'Hara et al
 - Review of 210 neonates with umbilical vein catheters
 - 20% of SGA neonates developed thrombus
 - 9% of AGA/LGA developed thrombus

Oncology Patients
- Male et al
 - Prospective cohort study of 85 children with ALL
 - 34% with thrombosis
 - Left sided, subclavian and percutaneously inserted catheters were independently associated with increased risk of thrombosis
- Journeycake et al
 - 287 pediatric oncology patients
 - Thrombosis associated with line-related infections, repeated occlusions, need for multiple catheters

CVL Related DVT
- Many series report high rate of thrombus formation when screening using various methods to screen
 - When screening a group of pediatric patients with CVL regardless of symptoms >30% may have evidence of a thrombus
CVL Related DVT

- Significantly smaller percentage of clots identified on screening are clinically symptomatic
- Despite some even being occlusive clots
- Long term outcome of the asymptomatic DVTs related to CVLs is unknown at this time

Outcomes with CVL Related DVT

- Outcomes often poorer
 - Likely related to seriousness of underlying disorders
- Massicotte et al
 - Review of data from Canadian registry
 - All-cause mortality 23%
 - VTE-related mortality 4%
 - Recurrence in 6.5%
 - Post-thrombotic syndrome in 10%

Prophylaxis with CVLs

- Data thus far does not support prophylactic anticoagulation in children with CVLs
- PROTEKT study
 - Multicenter, randomized trial of prophylactic riviparin vs routine heparin flushes
 - Closed early with low enrollment
 - No major bleeding events
 - 14% developed a thrombus
 - Though only screened with venography

QA/QI Analysis

- Retrospective review of all patients admitted to the PICU at WCHOB from July 2008 to June 2009 requiring placement of a CVL
- Goals:
 - Determine rate of thrombotic complications of CVL placement
 - Identify risk factors for development of thrombosis
 - Review outcomes of patients with CVL related DVT

Risk Factors

- Based on historical data and theoretical risks will compare several groups of hypothetical risk factors
 - Patient age/weight
 - Admission diagnosis
 - Infectious, surgical, traumatic
 - Sepsis, malignancy
 - CVL duration
 - CVL size
 - CVL location
 - Evidence of low flow state
 - Hypotension requiring volume or pressor support
 - Immobility related to intubation and/or paralytics

Subjects

- Reviewed all available records for patients from January 2009 to June 2009
 - 637 total PICU admissions
 - 150 with CVL
 - 106 with available medical records/data
 - 2/106 (2%) dialysis catheters
 - 95/106 (90%) non-tunneled catheters
 - 91/106 (8%) tunneled catheters
 - 2 Broviac
 - 7 Mediport
Characteristics
- Evaluating individuals with non-tunneled, temporary CVLs
 - Femoral, jugular, subclavian lines
- Mean age of 3.9 years
- Diagnosis
 - 52/71 (73%) Infectious
 - 11/71 (15%) Other Medical
 - 4/71 (6%) Trauma
 - 6/71 (8%) Surgical

Thrombosis
- Only 1/71 (1.5%) with symptomatic CVL related thrombus
 - Femoral line related clot in infant septic with meningococcemia
 - 2 other non-CVL-related DVTs
 - One related to local infection with osteomyelitis
 - One spontaneous DVT

WCHOB PICU
- Rate of thrombotic complications of CVLs comparable to reported data
 - Relatively low overall
- Current numbers very small so at this point unable to assess other factors/risks

Pediatric Venous Thrombosis
- Presentation
- Diagnosis
- Management
- Long term
 - Complications
 - Prophylaxis?

Presentation
- Clinical presentation depends on site and extent of thrombus
 - Many are asymptomatic
 - Most commonly located in extremities
 - Swelling, pain, discoloration
 - SVC syndrome
 - Chylothorax/chylopericardium
 - CVL related clots often present with catheter dysfunction or catheter related sepsis
 - May present with thrombocytopenia from platelet consumption

Diagnosis
- Most commonly diagnosed with doppler ultrasound with compression
 - Non invasive
 - Sensitive and specific for diagnosing most lower extremity and many upper extremity DVTs
- CT with contrast can be used for upper extremity, abdominal or pelvic clots
- Venography not generally necessary but can be helpful in select situations
Acute Treatment

- Anticoagulation
 - Initially with one form of heparin
 - Unfractionated (UFH)
 - Short half-life so can be turned off quickly
 - Low molecular weight
 - Decreased incidence of HIT
 - Requires adequate levels of antithrombin III which is normally low in neonates/infants
 - FFP prior to initiating therapy
- Therapeutic monitoring
 - aPTT frequently does not correlate well with anti-FXa levels in pediatrics (particularly infants)

Thrombolytics

- Not generally used with few exceptions
 - Significant IVC thrombus or pulmonary embolism
 - Most DVTs related to CVLs are well organized by diagnosis

Treatment

- Beyond immediate acute treatment - two options
 - Warfarin
 - Oral
 - Affected by diet, absorption, other medications
 - Sensitivity to drug varies at different developmental stages
 - May require freq. INR monitoring to maintain therapeutic range
 - LMWH
 - Daily subcutaneous injection
 - More predictable pharmacokinetics - less frequent monitoring
- REVIVE trial
 - Randomized comparison of LMWH vs UFH/oral anticoagulant
 - Closed early due to poor accrual
 - Recurrence: 6% rivaparin vs 13% UFH/oral anticoag
 - Not significant though likely due to low power

Evaluation of Initial Thrombus

- Identify risk factors for recurrent thrombosis
- Most pediatric cases have transient risk factors such as underlying disease state, CVL
- Identify congenital, non-modifiable risk factors that may impact future treatment or counseling

Risk Factors for Thrombosis

- Congenital
 - Factor V mutations
 - Prothrombin gene mutation
 - Deficiency of protein C, protein S or antithrombin
 - Elevations of lipoprotein a, homocysteine, factor VII/VIII/IX/XI may also increase risk
- Acquired
 - CVL
 - Most common risk
 - 60-90% of DVTs associated with CVL
 - Malignancy, trauma, surgery, hormone therapy, nephrotic syndrome/renal disease, antiphospholipid syndrome, medications, hemoglobinopathies, PNH

Risk Factors for Thrombosis

- Idiopathic venous thrombosis is rare in pediatrics
- Almost always an underlying risk factor/disease
- Andrew et al
 - Canadian registry
 - 50% with 3-4 identified risk factors
 - <10% with congenital disorder
 - FVL screening not available, Prot C and S only screened in 1/3
- Hagstrom et al
 - Close to 40% with either congenital risk factor or antiphospholipid antibody
 - Most common congenital risk factor was FVL
Initial Evaluation
- Generally includes
 - Protein C Activity
 - Protein S Levels (Total/Free)
 - Antithrombin III
 - LUPAC panel (Anticardiolipin Ab, dRVVT)
 - Activated protein C (APC) resistance
 - Potentially screen for factor V Leiden and other mutations
 - Homocysteine
 - Potentially screen for MTHFR mutations
 - Prothrombin 20210A mutation
 - Factor VIII
 - D-dimer
 - PT/PTT/Fibrinogen
 - ESR

Congenital Risk Factors
- Factor V Leiden
 - Mutation at cleavage site for activated protein C (APC)
 - Results in decreased sensitivity to natural anticoagulation effect of protein C and increased thrombin generation
 - Risk increased 7-fold for heterozygous and 80-fold for homozygous
 - Around 5% of US population are carriers

Congenital Risk Factors
- Antithrombin deficiency
 - Leads to excess thrombin formation
 - Heterozygotes with 5-fold increased risk
 - Homozygous rare, likely not compatible with life

- Protein C and Protein S deficiencies
 - Controls activity of factors Va and VIIIa
 - Heterozygotes with 5-10-fold risk
 - Homozygous generally present with purpura fulminans in infancy

- Prothrombin 20210A mutation
 - Increased prothrombin levels
 - Heterozygotes with 3-fold increased risk

- Hyperhomocysteinemia
 - Approximately 2.5-fold increased risk
 - Increases risk when associated with other known risk factors particularly factor V Leiden
 - Unknown mechanism
 - Related to mutation in MTHFR gene

Acquired Risk Factors
- Central venous line
 - Significant risk factor for venous thrombosis
 - Likely related to
 - Venous stasis
 - Turbulent blood flow around line
 - Endothelial cell damage
 - Thrombogenicity of catheter surface

- Antiphospholipid Antibodies (Lupus anticoagulant)
 - Anticardiolipin, Antiphosphatidylserine, β2 glycoprotein Ab
 - Present in 6-8% of general population
 - Often associated with collagen vascular diseases or some medications
 - Mechanism not clear but may be related to impaired regulation of thrombin, acquired abnormalities in protein C-protein S system
 - Persistent presence increases risk around 20-fold i.e. antiphospholipid syndrome

Acquired Risk Factors
- Trauma
 - Significant risk factor for thrombosis in adult patients, but not in pediatrics
 - Azu et al
 - Retrospective review at Level 1 Trauma center
 - No thrombotic events in 2,320 patients under 13yo
 - Two PEs in 1,025 patients from 13-17yo
 - Both with high trauma scores
 - Most received prophylaxis in this group
Malignancy

- Most common associated medical condition in CVL related VTE in Canadian Registry
- Cancer itself induces hypercoagulable state
- Some therapies have thrombotic risks
- Highest rates in ALL
 - Reported rates from 1%-32%
 - Average rate about 3%
 - Higher risk related to frequent use of Asparaginase
 - Halts protein synthesis including those in the Protein C-Protein S system
- Additional risks related to
 - Frequent long-term use of CVLs
 - Tumor compression of vessels

Therapy Duration

- No well established recommendations in pediatrics
 - Mostly extrapolated from adult data
- Most uncomplicated clots treated 3-6 months
- Individuals with clot progression, occlusive clots, persistently elevated inflammatory markers may be at increased risk of treatment failure
 - May benefit from longer period
 - Persistent elevation of Factor VIII or D-dimer may predict recurrence risk

Complications

- Thromboembolic events
 - Deep Vein Thrombosis
 - Pulmonary embolism
 - Estimated to occur in 30-60% of patients w/document DVT
- Cerebrovascular events
- Other (usually specific situations)
 - Portal Vein Thrombosis
 - Renal Vein Thrombosis
 - Superior Mesenteric Artery Syndrome
- Treatment related complications
 - Bleeding though generally rare

Long Term Clot Resolution

- Up to 50% of clots fail to completely resolve following therapy
- Recurrent Thrombosis
 - Nowak-Gottl et al Childhood Thrombophilia Study Group registry
 - Registry of 301 neonates/children treated w/6m anticoag
 - 21% recurrence w/mean f/u 7 years
 - Increasing data supporting importance of factor VIII and D-dimer in risk for recurrence
 - Goldenberg, NA et al
 - Elevated levels of either or both at diagnosis and at 3-6 months highly predictive of poor outcomes defined as incomplete clot resolution, recurrent thrombosis or post-thrombotic syndrome
 - Cosmi et al
 - D-dimer and factor VIII elevation 1 month following withdrawal of therapy are independent risk factors for recurrent VTE

Post-Thrombotic Syndrome

- Destruction of venous valves by thrombus or persistent thrombus
 - Venous hypertension
 - Increased hydrostatic pressure to soft tissue and skin
 - Most commonly in lower extremities
 - Pain, swelling, skin pigmentation, ulceration
 - Reported to affect up to 60% of patients
 - Less frequently in pediatrics
 - Monagle et al from Canadian pediatric registry
 - Over 12% diagnosed w/PTS at mean f/u of 3y
 - No comment on severity of symptoms
 - Generally mild in children
 - Increased limb circumference, swelling, varicose veins, pain
 - Rarely ulcerations

Mortality

- Neonates
 - Schmidt et al from Canadian registry
 - All cause mortality 18%
 - Did not report VTE-specific mortality
 - Beyond Neonatal period
 - Monagle et al report from Canadian registry
 - Median f/u of 3 years in 356 patients
 - 2% VTE-related mortality
 - All deaths in CVL-related clots
 - Several other series with similar rates of 1-4%
Prophylaxis

- Having genetic prothrombotic disorder does not necessarily require anticoagulation
 - Risks of long term anticoagulation often outweigh the benefit
- Most asymptomatic individuals (no VTE history) with known prothrombotic disorder do not require prophylaxis
 - Screening asymptomatic individuals for prothrombotic disorders also generally not necessary

Symptomatic Prophylaxis

- Individuals with significant congenital risk factor or antiphospholipid syndrome may be considered for long term anticoagulation
 - Initial thrombotic event - often anticoagulated up to 6 months
 - After initial therapy need to decide on long term prophylaxis
 - Many would save long-term prophylaxis for individuals with recurrent thrombosis
 - Depends on age, presentation and severity of underlying disorder
 - Long-term prophylaxis difficult when a diagnosis of thrombosis occurs in young age
 - Significant内外-threatening clot

Summary

- Thrombosis is rare in kids
 - Most often seen with acquired risk factor
 - Most common risk is presence of a CVL
 - Overall still rare in patients with CVLs and prophylaxis likely not indicated
- Underlying predisposition/thrombophilia adds to risk
 - May help guide therapeutic decisions
 - Despite added risk, screening in asymptomatic patients not necessary

References

More References