FISH and the Face
Luther K. Robinson, MD
Professor of Pediatrics

Principle:
If a patient has two or more minor malformations, an occult major malformation (or syndrome) is likely

Major vs Minor Malformation
- Major malformation
 - Arrest in morphogenesis
 - Affects function
 - Affects societal acceptance
- Minor malformation
 - Arrest in morphogenesis
 - No effect on function or societal acceptance

Major Malformation

Minor Malformation

Minor Anomalies

<table>
<thead>
<tr>
<th>Number of Minor Anomalies</th>
<th>No Major Anomaly</th>
<th>One Major Anomaly</th>
<th>Multiple Major Anomalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Percentage</td>
<td>Number</td>
<td>Percentage</td>
</tr>
<tr>
<td>1</td>
<td>574</td>
<td>97</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>89</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Marden et al., 1964 (n=8412)
Making a Diagnosis

- Clinical vs laboratory diagnosis
- Clinical diagnosis
 - No biomarker
 - “It is because I say it is”
 - Example: fetal alcohol syndrome
- Laboratory diagnosis
 - Associated with biomarker

. History:
 Prenatal alcohol exposure
 Examination:
 - Small head
 - Small eyes
 - Smooth philtrum
 - Thin vermilion
 . Diagnosis?

A Newborn with an Asymmetric Mouth

- Your diagnosis?
- Next steps?

Genetic Biomarkers

- Establish/exclude a diagnosis
- Aid in prognostication
- Aid in recurrence risk counseling
- Identify at-risk relatives
- Provide opportunities for ongoing care

Diagnosis?
Next steps?

Craniofacial Genetic Diagnosis

- Clinical
 - Laboratory
 - Chromosomal analysis
 - Fluorescence in situ hybridization (‘FISH’)
 - Direct DNA analysis
 - Chromosomal microarray analysis (CMA)
Approach to Clinical Diagnosis

- We assess
 - Facial proportion such as...
 - Upper face (e.g., prominent forehead)
 - Middle face (e.g., midface hypoplasia)
 - Lip/philtrum complex
 - Lower face (e.g., micrognathia)
 - Facial or cranial asymmetry
 - Facial asymmetry
 - Craniosenosis

Craniofacial Genetic Diagnosis

- Clinical
- Laboratory
 - Chromosomal analysis
 - Fluorescence in situ hybridization (“FISH”)
 - Direct DNA analysis
 - Chromosomal microarray analysis (CMA)

Diagnosis?

- Craniosynostosis
- Mitten syndactyly
- Variable clefting
- Mutation in FGFR2
- Allelic with Crouzon syndrome
- Paternal age effect
Crouzon Syndrome

- Autosomal dominant
- Allelic with Apert syndrome
- FGFR2 mutations

Craniofacial Genetic Diagnosis

- Clinical
- Laboratory
 - Chromosomal analysis
 - Direct DNA analysis
 - Fluorescence in situ hybridization ("FISH")
 - Chromosomal microarray analysis (CMA)

Toddler with developmental delays...

What do you see?

Diagnosis?

Astley’s Likert lip-Philtrum Guide

From Astley et al, 1996

FAS “Look alikes”

- Williams syndrome (ELN 7q23 deletion)
- VCF/DGS syndrome (22q11.1 deletion)
- Anticonvulsant embryopathy
- Maternal PKU embryopathy
- Juvenile bipolar illness
- Dubowitz syndrome
The Phenotype

- Growth deficiency, mild
- Microcephaly, mild
- "Cocktail party" personality
- Wide mouth, full lips
- Stenotic vascular lesions
 - PS, SVAS, RAS
- FISH - deletion in ELN region on 7q11.23

Fluorescence in situ hybridization (“FISH”)

- Developed in the 1990s
- Useful for clinically identifiable microdeletion syndromes that cannot be detected using standard cytogenetic methods
 - Deletion 22q11.2 (velocardiofacial syndrome)
 - Williams syndrome
- Also for rapid detection of common aneuploidy in amniotic fluid samples

Fluorescence in situ Hybridization

- Six-year-old
- Developmental delays
- Smooth philtrum
- Small alae nasi
- Anomalous auricle
- Diagnosis?
Boy with Developmental Delays and Hoarse Voice
- Velopharyngeal insufficiency (VPI)
- Hypermusal speech
- “Narrow” palpebral fissures
- Long nose/thin alae nasi

The Phenotype
- Growth –
 - Feeding difficulties/VPI
 - Short stature, postnatal ~60%
- Performance
 - Normal to mild learning disabilities ~60%
 - IQ 70 – 90+
 - Thought disorder/psychosis 10%
- Craniofacial
 - Narrow palpebral fissures
 - Midface hypoplasia
 - Smooth philtrum (Astley 4 – 5/5)
 - Thin vermilion (Astley 4 – 5/5)
 - Hypoplasia of submucosal palatal musculature
 - Robin sequence
 - Anomalous auricles

Review of Cases at WCHOB
- n = 25
- male = 11/25 (44%)
- Common presentations
 - Murmur – 24%
 - “Dysmorphic” – 28%
 - Velopharyngeal insufficiency – 16%
 - Developmental delay – 12%
 - Psychosis – 4%

The Phenotype
- Limbs
 - Long gracile fingers
 - Mild cutaneous syndactyly
- Other
 - Cardiac defects, VSD, conotruncal ~85%
 - Hypocalcemia
 - Thymic hypoplasia/immunodeficiency

Craniofacial Genetic Diagnosis
- Clinical
- Laboratory
 - Chromosomal analysis
 - Fluorescence in situ hybridization (“FISH”)
 - Direct DNA analysis
 - Chromosomal microarray analysis (CMA)
Case

- Three-month of female with VSD, poor weight gain, small head small head, Third born child to a 23-year-old healthy woman and her 23-year-old healthy nonconsanguineous husband
- Family history was remarkable for a maternal uncle with a VSD; several maternal relatives also had learning disabilities

Family History

- Mother: 23-years-old; healthy
- Father: 23-years-old; healthy
- No consanguinity
- Maternal uncle has VSD; several maternal relatives also had learning disabilities

Prenatal and Birth History

- 40 weeks' gestation
- Prenatal exposure to varicella at 6 months of pregnancy; mother did not develop chicken pox
- Vaginal/vertex delivery; birth weight was 5#5oz
- NICU admission for transient respiratory distress and hypoglycemia; discharged at 4 days of age

Newborn Examination

- Weight at (term) birth: 2.6 kg
- Length – 50 cm
- Clinical findings
 - Growth deficiency, mild
 - Hypotonia, mild
 - Large (3 cm x 3 cm) anterior fontanelle

Postnatal History: Medical

- Cardiology: VSD diagnosed at age 4 months; required surgical closure
- Neurology: parents suspected seizures beginning at age 4 months; negative work-up
- Ophthalmology: pseudostrabismus; otherwise normal
- Audiology: normal hearing

Diagnostic Studies

- EEG: normal
- Echocardiogram: VSD and PDA
- MRI brain: normal
- Routine karyotype:
Developmental History
- Motor and speech delays, severe
 - Hypotonia during infancy
 - Walked independently at age 34 months
 - No true speech; 2-3 consistent signs

Physical Examination
- Age: 3 years 6 months
- Growth:
 - Height: 88 cm (<5th centile; 50th centile for 27 months)
 - Weight: 12 kg (3rd centile; 25th-50th centile for 27 months)
 - OFC: 45 cm (<3rd centile; 3rd centile for 27 months)

Craniofacial
- Straight eyebrows
- Depressed nasal bridge
- Short columella

Extremities
- Short fifth fingers

Assessment
- 3½-year-old with unrecognized pattern of malformation (i.e., no diagnosis assigned)
 - Growth deficiency
 - Hypotonia, global delays, absent speech
 - Small head
- Diagnostic considerations: submicroscopic chromosomal abnormality
Diagnostic Studies

- Chromosomal microarray analysis (CMA):
 - Submicroscopic deletion at 1p36

Chromosomal Microarray Analysis

- Examines genetic “hot-spots” for chromosomal deletions and duplications throughout the genome
- Detects copy number variations at resolution of 1Mb or less
- Detection rate 10-20% for individuals with normal karyotype, unexplained developmental delay/MR +/- dysmorphic features

Chromosomal Microarray Analysis

Deletion 1p36: A Recognizable Pattern of Malformation

- Most common terminal chromosomal deletion, occurring in 1/5000 live births
- Accounts for ~1% of cases of unexplained mental retardation
- 2-3% of the general population has mental retardation, 50% of which have no identifiable etiology (genetic or environmental)

Deletion 1p36: The Phenotype

- Growth: postnatal growth deficiency (85%)
- Development:
 - Feeding difficulties: oropharyngeal dysphagia with failure to thrive
 - Hypotonia/developmental delays (95%)
 - Seizures (45%)
 - Severe to profound mental retardation with absent or very little speech

Deletion 1p36: The Phenotype

- Craniofacial:
 - Microcephaly (95%)
 - Large anterior fontanelle
 - Decreased AP dimension of the head
 - Straight eyebrows
 - Deeply set eyes
 - Depressed nasal bridge
 - Pointed chin
Deletion 1p36: The Phenotype

- Cardiac defects (70%)
- Hearing loss (28%)

WCHOB Experience: arrCGH

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intellectual developmental delay</td>
<td>5</td>
<td>30.5%</td>
</tr>
<tr>
<td>Hypothalamic-hypophyseal abnormal phenotype</td>
<td>2</td>
<td>1.2%</td>
</tr>
<tr>
<td>Dysmorphic features</td>
<td>20</td>
<td>12.9%</td>
</tr>
<tr>
<td>Unrecognized multiple malformation syndrome</td>
<td>726</td>
<td>46.9%</td>
</tr>
<tr>
<td>Minor malformations</td>
<td>50</td>
<td>3.2%</td>
</tr>
<tr>
<td>Dysmorphic features</td>
<td>12</td>
<td>0.7%</td>
</tr>
<tr>
<td>Dysmorphic facial</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Minor malformations</td>
<td>17</td>
<td>1.1%</td>
</tr>
<tr>
<td>Dysmorphic features</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>DD/macrocephaly</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>DD/minor malformations,polymorphisms</td>
<td>2</td>
<td>0.1%</td>
</tr>
<tr>
<td>DD/microcephaly</td>
<td>17</td>
<td>1.1%</td>
</tr>
<tr>
<td>DD/microcephaly</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>DD/hypotonia</td>
<td>30</td>
<td>18.9%</td>
</tr>
<tr>
<td>DD/hypernasality</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>DD/hearing loss</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>DD/dysmorphic features</td>
<td>59</td>
<td>3.6%</td>
</tr>
<tr>
<td>DD/MR</td>
<td>323</td>
<td>20.3%</td>
</tr>
<tr>
<td>Balanced translocation, abnormal phenotype</td>
<td>7</td>
<td>0.4%</td>
</tr>
<tr>
<td>Autism, developmental delay</td>
<td>25</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Microarray Analysis

- Higher resolution than any previously available cytogenetic technique
- Potential diagnosis of previously unrecognized patterns of malformation

Microarray Analysis - Considerations

- Pathologic change or parental polymorphism?
 - Some *benign copy number* changes may be familial polymorphisms
- Prognosis may be unknown for *de novo* rearrangements
- Need for pre-authorization (carriers and NYSDOH)
Microarray Analysis - Indications

- Patients with unexplained cause of birth defects mild or more severe mental retardation
 - Growth deficiency
 - Mental deficiency
 - Microcephaly
 - Craniofacial anomalies
- “Gestalt”, “looks chromosomal”