Clostridia Difficile: An Update

2009

Clostridia Difficile
- Gram positive bacillus
- Anaerobic, difficult to grow, thus its name
- Spore forming
- Toxin producing
- Inhabits the colon

Clostridia Difficile
- Spores resistant to drying and susceptible to Clorox
- Vegetative form susceptible to drying and pH <5
- Toxins: A=enterotoxin, B=cytotoxin, Binary (new)

Laboratory Diagnosis of CD
- Culture: uncommon and requires 48-96 hours
- Toxin A and/or B detection by immunoenzyme assay: common and requires <24 hours
- Cytotoxic assay: gold standard, uncommon, requires 24-48 hours

Laboratory Testing for CD
- 1-2 samples sufficient to prove negative
- Do not retest positives
- Do not perform test of cure
Epidemiology in Hospitalized Children

- The incidence increased from 2001-2006, 2.6-4.0/1000 hospitalizations among children 1-11 years of age.
- 67% of children had chronic diseases.
- “Among children less than 1 year of age, the incidence increased from 2.8-5.1/1000 hospitalizations from 2000-2005”.

Risk Factors for CD Associated Disease (AD)
- Antibiotic exposure
- Hospitalization
- Prolonged hospitalization
- Long term care facility
- Increasing age, especially >65 years
- Severe underlying disease
- GI surgery
- Proton pump inhibitors and H₂ blockers

Risk of CDAD by Antibiotic Class
- Fluoroquinolones 3.9
- Cephalosporins 3.8
- Clindamycin 1.6
- Macrolides 1.3

Spectrum of CDAD
- Mild
- Moderate
- Severe

Community Acquired Clostridium difficile (CADC) Infection in Children Undergoing Colonoscopy

Susan S. Baker, MD, PhD
Digestive Diseases and Nutrition Center
CACD

CD is associated with IBD
CD is associated with gastric acid suppression

Noted CD positive stools in patients
Assessed stool aspirates obtained at colonoscopy for CD

CACD Areas Cultured

<table>
<thead>
<tr>
<th>Areas Cultured</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonoscopes X 10</td>
<td></td>
</tr>
<tr>
<td>Endoscopy Suite</td>
<td>counters and floors</td>
</tr>
<tr>
<td>Outpatient areas</td>
<td>counters, chairs, toilet seats, door knobs, computer key boards, table surfaces, examination tables, floors, sinks, faucet handles</td>
</tr>
<tr>
<td>Inpatient areas</td>
<td>beds, railings, stretchers, showers, bath areas, sinks, faucets</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
</tr>
</tbody>
</table>

CACD

Dr. Faden reviewed procedures for colonoscopy
Cultured 52 sites

CACD

Chart review of all colonoscopies performed between September 1, 2006 and August 31, 2008

322 Total colonoscopies
235 (73%) Colonic aspirates
41 (17%) Positive for CD

CACD

Other infections
1. pin worms (CD +)
2. H pylori (CD -)
3. Y enterocolitica (CD -)
Percent of Colonic Aspirates Positive for C. difficile by Quarter

<table>
<thead>
<tr>
<th>Quarters</th>
<th>% of aspirates positive for C. difficile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st 2006</td>
<td>20%</td>
</tr>
<tr>
<td>2nd 2006</td>
<td>25%</td>
</tr>
<tr>
<td>3rd 2006</td>
<td>30%</td>
</tr>
<tr>
<td>4th 2006</td>
<td>35%</td>
</tr>
<tr>
<td>1st 2007</td>
<td>40%</td>
</tr>
<tr>
<td>2nd 2007</td>
<td>45%</td>
</tr>
<tr>
<td>3rd 2007</td>
<td>50%</td>
</tr>
<tr>
<td>4th 2007</td>
<td>55%</td>
</tr>
<tr>
<td>1st 2008</td>
<td>60%</td>
</tr>
<tr>
<td>2nd 2008</td>
<td>65%</td>
</tr>
<tr>
<td>3rd 2008</td>
<td>70%</td>
</tr>
<tr>
<td>4th 2008</td>
<td>75%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CD positive</th>
<th>CD negative</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years (x̄ + SD, range)</td>
<td>58.5 (+ 14.8, 26-91)</td>
<td>53.1 (+ 14.8, 26-91)</td>
<td>0.37</td>
</tr>
<tr>
<td>Male (%)</td>
<td>57 (38.7)</td>
<td>13 (33.3)</td>
<td>0.47</td>
</tr>
<tr>
<td>Histologic Abnormalities (%)</td>
<td>11 (7.6)</td>
<td>3 (1.3)</td>
<td>0.08</td>
</tr>
<tr>
<td>Endoscopic abnormalities (%)</td>
<td>12 (8.6)</td>
<td>20 (5.3)</td>
<td>0.08</td>
</tr>
<tr>
<td>Normal (%)</td>
<td>2 (1.3)</td>
<td>0 (0.0)</td>
<td>0.37</td>
</tr>
<tr>
<td>Other (%)</td>
<td>12 (8.6)</td>
<td>20 (5.3)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Characteristics of patients Undergoing Colonoscopy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CD positive</th>
<th>CD negative</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Diagnosis</td>
<td>CD (n=235)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulcerative colitis (%)</td>
<td>40 (%)</td>
<td>140 (%)</td>
<td>0.47</td>
</tr>
<tr>
<td>Crohn's Disease (%)</td>
<td>40 (%)</td>
<td>140 (%)</td>
<td>0.47</td>
</tr>
<tr>
<td>Indeterminate colitis (%)</td>
<td>40 (%)</td>
<td>140 (%)</td>
<td>0.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Findings</th>
<th>CD positive</th>
<th>CD negative</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stool abnormalities (%)</td>
<td>40 (%)</td>
<td>140 (%)</td>
<td>0.47</td>
</tr>
<tr>
<td>No symptoms (%)</td>
<td>40 (%)</td>
<td>140 (%)</td>
<td>0.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>CD positive (%)</th>
<th>CD negative (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain</td>
<td>60</td>
<td>30</td>
<td>0.05</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>20</td>
<td>10</td>
<td>0.05</td>
</tr>
<tr>
<td>Perianal abscesses</td>
<td>20</td>
<td>10</td>
<td>0.05</td>
</tr>
<tr>
<td>Rectal bleeding</td>
<td>20</td>
<td>10</td>
<td>0.05</td>
</tr>
<tr>
<td>Vomiting</td>
<td>10</td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td>Blood</td>
<td>20</td>
<td>10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Some patients had more than one symptom.
CD = Clostridium difficile

C. difficile Symptoms

No single symptom associated with C. difficile

Multivariate analysis
Only abdominal pain and weight loss (p<0.01) correlated with CD +

C. difficile Outcome

41 CD +
5 lost
33 treated with metronidazole
1 treated with vancomycin
1 treated with rifaximin
1 treated with probiotics
35 symptoms resolved
1 symptoms continued, but follow up CD -

Positive correlation with the use of acid suppression (p<0.01) and CD +
Too few charts to test antibiotic use and CD +, but 33% of CD + had no history of antibiotic use
CACD Summary

- Community acquired CD exists
- May be increasing in frequency
- Associated with gastric acid suppression
- Symptoms cannot be used to discriminate between CD + and CD -
- 33% had no history of antibiotic use within 3 months of procedure

CACD What does it mean?

- Consider stool *C. difficile* toxin titers for children with GI complaints in Buffalo area
- Be careful to use acid suppression only when necessary
- Consider screen for CD even if no history of antibiotic use or admission to a health care facility

Treatment of CD AD

- **Mild:** Stop antibiotics, Metronidazole PO or IV for 10-14 days
- **Moderate:** Stop antibiotics, Vancomycin PO for 10-14 days
- **Severe:** Stop antibiotics, Vancomycin PO for 10-14 days

Severe CDAD

- Fever
- Hypotension
- Severe abdominal pain and/or distention
- Ascites
- WBC >15,000
- Albumin <2.5
- Pseudomembranous colitis
- Toxic megacolon
- Perforation
- Shock

Management of Severe CDAD

- Obtain surgical consult
- Add metronidazole
- Consider rectal vancomycin
- Consider IVIG
- Consider colostomy

Figure 1. Response Rates to Vancomycin and Metronidazole Therapy, According to the Severity of *C. difficile* Infection. Kelly and Lamont NEnglJMed 2008 359:1932
Recurrent CDAD

- After first episode = 20%
- After second episode/first recurrence = 45%
- After third episode/2nd recurrence = 65%

Treatment of Recurrent CDAD

1. First recurrence:
 - Mild: repeat metronidazole
 - Moderate/Severe: repeat vancomycin
2. Second recurrence: Tapering Vancomycin
dosing= QID x 14 days → BID x 7 days →
 QD x 7 days → QOD x 8 days (4 doses) → Every 3
days x 19 days (5 doses)
3. Third recurrence: Vancomycin x 14 days
 followed by rifaximin x 14 days

Non Proven Therapies for CDAD

- *Saccharomyces boulardii* x 28 days
- *Lactobacillus GG* (acidophilus)
- Rifampin

New Epidemic Strain of CDAD

- NAP 1 (North American Pulse Field Type 1)/or BI

This organism has a tcd C gene deletion
which allows increase production of toxin.
Also, a new toxin, the Binary toxin is produced.

References

- CP Kelly and JT LaMont. NEJM 2008;359:1932.
- K Bryant and LC McDonald. PIDJ 2009; 28:1
- MD Zilberberg et al. PIDJ 2008; 27:1111